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Eigentheory of the Inhomogeneous 
Fokker-Planck Equation 
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Ambiguities that occur in the existing eigentheory of the inhomogeneous 
Fokker-Planck equation are resolved. The eigenfunction expansion is 
shown to be identical to the known exact solution, generalizing an earlier 
result for the space-homogeneous case. 
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There  are a number  o f  nonequi l ib r ium prob lems  tha t  can be s tudied by using 
a per tu rba t ive  a p p r o a c h  using inf ini te-di lut ion Brownian  mot ion  for  the 
reference p ropaga to r ,  a The mathemat ica l  theory  for descr ibing the infinite- 
d i lu t ion  Brownian  mo t ion  is well developed,  (5~ and has proven  capable  o f  
a c c o m m o d a t i n g  certain recent general izat ions.  (6~ In the present  paper  we will 
be concerned with solut ions to the inhomogeneous  F o k k e r - P l a n c k  equa t ion  
( IFPE) ,  which we define here to avoid  ambigu i ty  to be the kinetic  equa t ion  
tha t  describes the d is t r ibu t ion  funct ion f ( r ,  p, t)  for a Brownian  part ic le  at  
infinite di lut ion.  F o r  the spat ia l ly  un i form case the fundamenta l  solut ion o f  
this equa t ion  was found  by Uhlenbeck  and Ornstein.  (7~ The e igentheory for  

this case is impl ic i t  in their  results,  ~ and  an explici t  e igentheory has also been 
given. ~8~ The fundamenta l  solut ion for  the I F P E  is also known [Ref. 5, 
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a The pioneering work of Friedman together with recent extensions remains the most 
ambitious attempt at doing this. ~1~ For a recent extension see Degani. ~2~ Also, in a dif- 
ferent context, Mazo~3~ and Harris. ~) 

4 See note II at the end of Ref. 7. 
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Sections 4(ii), 4(iii)], and more recently an eigentheory for this equation has 
been considered. (9) In our own work in progress, on separate problems, we 
have attempted to use this eigentheory and have concluded that the existing 
treatment is somewhat ambiguous. The purpose of this note is to give a clear 
exposition of the theory, which we hope others will find useful. 

The notation used here will follow that of Refs. 1 and 9 with only minor 
changes. The IFPE is 

~ f  + P . O f  ~ + ~ f  __ O----.[fi-a ~ p 
~-7 m e t =  ~p ~ -~ m ! (0 

with/3 = 1/kBT and ~ the friction coefficient. The fundamental solution to 
this equation has been given by Chandrasekhar [Ref. 5, Sections 4(ii), 4(iii)], 
using methods from the theory of differential equations. For convenience we 
will work directly with the Fourier transform of f ,  

fq(p, t) ~ f dr exp(iq.r) f ( r ,  p, t) (2) 

in which case we can take the initial coordinate to be the origin. From Ref. 1 
we have 

fq(p, t) = (zrG) -3/~ e x p [ - S 2 / G  - q2D/4G + iqH-(p + po)/G] (3) 

where Po is the initial value of p, and 

S = p - -  poO, 0 = e -t~/"~ 

G = 2m/3-1[1 - 02], H = (2m//3~)[1 - 0] 2 (4) 

D = FG - H 2, V = (2rn//3~2)[Z(t/m)~ - 3 + 40 - 02] 

Since the solution separates, we will restrict ourselves to the one-dimensional 
problem in what follows. 

In going from Eq. (3) to the final result of this section only a transforma- 
tion of variables and algebraic manipulation is required. Some insight as to 
how to proceed is provided by earlier work(9); however, our conclusions will 
be seen to be somewhat different than those results. In terms of the reduced 
variables k and u, where 

k(Z/3/m)l/2~ = q, u(2m//3) ~/2 = p (5) 

we have 

f~(u, t) = (TrG) -1/2 exp{G-~[-u  2 - 02uo 2 + 20UUo - k2D + 2ik(u + uo)H]} 
(6) 

where G, H, and ff are defined as the appropriate bracketed terms in Eq. (4) 
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(e.g., C = 1 - 0 2) a n d / 9  = F G  - j~2. In terms o f  these variables and z = 
u - 2ik,  Zo = Uo ~ 2ik the above expression can be written as 

fk(u, t) = (zr(~) -1/2 exp(uo 2 + 2k 2) e x p ( - 2 t ~ k 2 / m )  e x p [ - ( u  - ik) 2] 
• exp[ - (Uo - ik) 2] e x p [ - ( f f - l ( z  2 + Zo 2 - 2zzoO)] exp(z 2 + Zo 2) 

(7) 

Making  use o f  an identity for Hermite polynomials,  ~1~ we then arrive at 

fk(u,  t) = 7r -1/2 exp(uo 2 + 2k 2) e x p ( - 2 t ~ k 2 / m )  
• e x p [ - ( u  - ik) 2] e x p [ -  (Uo - ik) 2] 

• ~ (On/2'~n!)H,~(z)a,~(Zo) (8) 
n = 0  

which suggests the eigenfunction expansion 

fk(u,  t) = ~ c . (k ,  t)~b.(k, u) (9) 
rb 

with eigenfunctions ~b.(k, u) = { e x p [ - ( u  - ik)2]}H~(u - 2ik). 
The eigenvalue problem associated with the Fourier- t ransformed I F P E  

is 

p i q +  ~-~p ~-l_~p + ~b,~(q,p) = A,~(q)~b,~(q,p) (10) 

This differs in the sign of  the term containing the i f rom the corresponding 
equat ion studied in Ref. 9 [cf. Eq. (A4.18) there]. This is a minor  point, but  
taken together with a misprint in the final result there, Eq. (A4.29), it leads 
to an uncertainty as to the precise specification o f  the eigenfunctions. The 
key issue is orthogonality,  and as we shall show, the ~bn are themselves orthog- 
onal, with respect to the proper weight function, rather than conjugate pairs 
as might  be expected. 

In terms of  the reduced variables u, k and reduced eigenvalues 

Eq. (10) becomes 

N o w  let 

tz,~(k) = (m/~)A , ( k )  (11) 

2uik  + -Eu -2-~u + u - tz~ ~b. = 0 (12) 

4J~ = {exp [ -  (u - ik)~l}4~(u, k)  (13) 

5 The identity used to go from Eq. (7) to Eq. (8) does not appear in several other standard 
reference sources for mathematical formulas, so the misprint in the sign of the denomi- 
nator that appears here is particularly vexatious. The correct form follows from the 
results of note II of Ref. 7 when Hermite polynomials are used in place of the Weber's 
functions used there, and also directly from the generating function formula for 
Hermite polynomials, 
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and use z = u - 2 i k  again, so that  Eq. (12) can be written as 

2 z ~  + 2n95, = 0  6922 U Z  

where 

(14) 

t~n = - n  - 2k 2 (15) 

This differs f rom Ref. 9, in which the coefficient o f  the k 2 term is 1, but  
agrees with our  earlier result, Eq. (7). The substitution given in Eq. (13) and 
subsequent t ransformat ion f rom u, k to z, which are both taken directly f rom 
Ref. 9, are the crucial elements that  allow us essentially to solve Eq. (12) by 
inspection since in this representation we need only solve Eq. (14), which is 
the canonical  equat ion for Hermite polynomials H~(z), 6 so that  

~bn = ( e x p [ -  (u - ik)2]}H~(u - 2 ik )  (16) 

Returning now to the Fourier- t ransformed IFPE,  with our use o f  
reduced variables continued, the s tandard procedure for solving this equation 
is to expand f~ (u ,  t )  in the ~b~, as shown in Eq. (9). I f  the equation is not  
Hermit ian adjoint, the eigenfunctions for the Hermit ian adjoint equation 
must  be used or else the c~ cannot  be determined by the usual argument,  
which depends on the or thogonal i ty  o f  the eigenfunctions. But we know that  
the H~ are or thogonal  on the real axis, and so we would not  expect the 
difficulties with such an expansion indicated in Ref. 9. Let us first show this 
and then see why this is the case. Substituting Eq. (9) into the Fourier  trans- 
form of  Eq. (1) written in terms o fu  and k, and multiplying by ~b~ exp(u ~ + 2k 2) 
and integrating over z, we obtain 

1- -~  - A , c ,  _o~ dz  e -  H m ( z ) H ~ ( z )  = 0 (17) 

f rom which it follows that  

c , ( k ,  t )  = c , ( k ,  O) e x p ( - n ~ t / m  - 2k2 t~ /m)  (18) 

Using Eq. (9) at t = 0, we find in the same way 

c~(k,  0) = (exp(u02 + 2k  2) e x p [ - ( u 0  - ik)2]}H~(zo)/Trl/22"n! (19) 

so that  Eqs. (9), (15), (18), and (19) give the identical result as Eq. (8)! 

6 If we use k' = 2112k, u' = 21J2u in place of k and u and let 

~b, = {exp[- (u' - ik')2/2]}(~n'(k ', u'), 

then we find ~,' = He~(z') and tz~' = - n  - k '2. This choice of reduced variables 
allows the three-dimensional problem to be treated directly in terms of Hermite tensor 
polynomials, C8) which is notationally more efficient than using the Hermite polynomials. 
For direct application involving the use of standard integrals the latter seem the best 
choice, and so we have used these throughout. 
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H o w  is it we can apparently escape exercising the care suggested in 
Ref. 9 and plunge ahead, determining the c~ without  considering the Her- 
mitian adjoint equat ion?  Specifically, why does Eq. (12) generate eigenfunc- 
tions that  are or thogonal  (with respect to the proper  weight), so that  these, 
rather than a bior thogonal  set o f  eigenfunctions, provide the basis for an 
expansion? The reason for this seeming departure f rom normal  procedure 
appears to be the explicit presence o f  the i in this equation, an unusual  
occurrence. Thus, in establishing the or thogonal i ty  properties o f  the r 
directly, if we multiply Eq. (12) by @m exp( u2 + 2k~) and subtract  f rom the 
equat ion with rn and n interchanged, all goes well. However,  if the biorthog- 
onal set were required, we would multiply by era* times a weight function, 
and subtract  the conjugated equation for ~t m multiplied by r times the 
weight function. In the latter case the terms containing i do not  vanish, leaving 
us without  an or thogonal i ty  relationship for the conjugate pair. 7,a 
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8 It is amusing to note that when the difficulties described in this paper are finally 
resolved and the results applied, the result given in a standard reference for one of the 
integrals commonly encountered is found to contain a misprint: In integral 7.374,7 
of Ref. 11 the subscript on the Laguerre polynomial should be m, not n. In light of the 
other misprints we have mentioned, we consider this as strong evidence for the existence 
of Maxwell's demon! 


